PCA在R语言中的实现 PCA 简介PCA(Principal Component Analysis),即主成分分析。PCA是一种研究数据相似性或差异性的可视化方法,采取降维的思想,PCA 可以找到距离矩阵中最主要的坐标,把复杂的数据用一系列的特征值和特征向量进行排序后,选择主要的前几位特征值,来表示样品之间的关系。通过 PCA 可以观察个体或群体间的差异。PC 后面的百分数表示对应特征向量对数据的解释量,此值越大越好。 2020-01-07 R语言 #R语言
群体遗传学与重测序分析 分子层面对生物的研究,在个体水平上主要是看单个基因的变化以及全转录本的变化(RNA-seq);在对个体的研究的基础上,开始了群体水平的研究。如果说常规的遗传学主要的研究对象是个体或者个体家系的话,那么群体遗传学则是主要研究由不同个体组成的群体的遗传规律。在测序技术大力发展之前,对群体主要是依靠表型进行研究,如加拉巴哥群岛的13中鸟雀有着不同的喙,达尔文认为这是自然选择造成的后果1。达尔文的进化论对 2020-01-07 生物信息学 #生物信息学