PCA提取变量的贡献度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
rm(list = ls())

library(vegan)
library(ggplot2)
library(ggprism)
library(FactoMineR)
library(factoextra)

data("iris")

res.pca <- PCA(iris[, 1:4], graph = FALSE)

contribution <- fviz_pca_var(res.pca, col.var = "contrib")

contribution$data %>%
dplyr::arrange(-contrib) %>%
dplyr::slice(1:2) %>%
ggplot(aes(contrib, name)) +
geom_bar(stat = "identity", width = 0.6) +
scale_fill_prism() +
guides(x = "prism_offset_minor", y = "prism_offset") +
labs(x = "Contribution", y = "Variable") +
theme_prism(base_size = 12)

💌lixiang117423@foxmail.com
💌lixiang117423@gmail.com


PCA提取变量的贡献度
https://lixiang117423.github.io/article/pcacontribution/
作者
小蓝哥
发布于
2022年4月3日
许可协议